We consider the communication complexity of the Hamming distance of two strings. Bille et al. [SPIRE 2018] considered the communication complexity of the longest common prefix (LCP) problem in the setting where the two parties have their strings in a compressed form, i.e., represented by the Lempel-Ziv 77 factorization (LZ77) with/without self-references. We present a randomized public-coin protocol for a joint computation of the Hamming distance of two strings represented by LZ77 without self-references. While our scheme is heavily based on Bille et al.'s LCP protocol, our complexity analysis is original which uses Crochemore's C-factorization and Rytter's AVL-grammar. As a byproduct, we also show that LZ77 with/without self-references are not monotonic in the sense that their sizes can increase by a factor of 4/3 when a prefix of the string is removed.


翻译:我们考虑了两个字符串的Hamming距离的通信复杂性。 Bile 等人[SPIRE 2018] 考虑了双方以压缩形式,即以Lempel-Ziv 77因子化(LZ77)为代表,且/无自我参照,在两个字符串的Hamming距离(LCP)的环境下,最长的共同前缀(LCP)问题的通信复杂性。我们提出了一个随机化的公币协议,用于联合计算LZ77所代表两个字符串的Hamming距离,而没有自我参照。虽然我们的计划在很大程度上基于Bile et al的LCP协议,但我们的复杂度分析是原始的,使用Crochemore的C-因子化和Rytter的AVL-grammar。作为一个副产品,我们还表明,在删除字符串的前缀时,其大小可能增加4/3的系数。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
28+阅读 · 2020年10月11日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员