Automated medical coding is a process of codifying clinical notes to appropriate diagnosis and procedure codes automatically from the standard taxonomies such as ICD (International Classification of Diseases) and CPT (Current Procedure Terminology). The manual coding process involves the identification of entities from the clinical notes followed by querying a commercial or non-commercial medical codes Information Retrieval (IR) system that follows the Centre for Medicare and Medicaid Services (CMS) guidelines. We propose to automate this manual process by automatically constructing a query for the IR system using the entities auto-extracted from the clinical notes. We propose \textbf{GrabQC}, a \textbf{Gra}ph \textbf{b}ased \textbf{Q}uery \textbf{C}ontextualization method that automatically extracts queries from the clinical text, contextualizes the queries using a Graph Neural Network (GNN) model and obtains the ICD Codes using an external IR system. We also propose a method for labelling the dataset for training the model. We perform experiments on two datasets of clinical text in three different setups to assert the effectiveness of our approach. The experimental results show that our proposed method is better than the compared baselines in all three settings.
翻译:自动化医疗编码是一个过程,将临床说明自动编译成适当的诊断和程序编码,从ICD(国际疾病分类)和CPT(当前程序术语)等标准分类法中自动调取适当的诊断和程序编码。手册编码过程包括从临床说明中识别实体,然后查询商业或非商业医疗编码 信息检索(IR)系统,遵循医疗和医疗援助服务中心的准则。我们提议通过使用从临床说明中自动提取的实体自动提取的IR系统查询,使这一人工程序自动化。我们提议了\ textbf{GrabQC},一个\ textbf{Graw}ph\ textbf{b}b}ased asked\ textb ⁇ ury\textbf{C} 文本化方法,该方法自动提取临床文本的查询,使用图表神经网络(GNNN)模型将查询背景化,并使用外部IR系统获取ICD编码。我们还提议了一种为模型培训数据设置标签的方法。我们在三个试验模式中进行比我们提出的三个试验方法更好的测试结果。我们在三个试验设置中进行两种试验,在三个试验的模型的模型的模型中显示两个基准中显示。