Given a graph $G=(V,E)$ and an integer $k \ge 1$, a $k$-hop dominating set $D$ of $G$ is a subset of $V$, such that, for every vertex $v \in V$, there exists a node $u \in D$ whose hop-distance from $v$ is at most $k$. A $k$-hop dominating set of minimum cardinality is called a minimum $k$-hop dominating set. In this paper, we present linear-time algorithms that find a minimum $k$-hop dominating set in unicyclic and cactus graphs. To achieve this, we show that the $k$-dominating set problem on unicycle graph reduces to the piercing circular arcs problem, and show a linear-time algorithm for piercing sorted circular arcs, which improves the best known $O(n\log n)$-time algorithm.
翻译:根据GG=(V,E)美元和1美元整数1美元,以K$为主,以G$为主,以KK$为主,确定美元为美元,因此每个顶点$v=以V美元为单位,就存在一个节点美元=以D$为单位,其跳距离从$v美元最多为K美元。一个以K$为主的最起码基点的一套称为$k美元为主点的套件。在本文中,我们提出线性时算法,在单环形和仙人掌图中找到一个最低值$k$-Hop为主的套件。为了达到这个目的,我们表明单环形图上一个以美元为主的固定问题将缩小到穿孔圆弧的问题,并显示一个穿孔分类圆弧弧的线性算法,这改进了已知的最佳值为O(n)n-时间算法。