In recent years, a variety of randomized constructions of sketching matrices have been devised, that have been used in fast algorithms for numerical linear algebra problems, such as least squares regression, low-rank approximation, and the approximation of leverage scores. A key property of sketching matrices is that of subspace embedding. In this paper, we study sketching matrices that are obtained from bipartite graphs that are sparse, i.e., have left degree~s that is small. In particular, we explore two popular classes of sparse graphs, namely, expander graphs and magical graphs. For a given subspace $\mathcal{U} \subseteq \mathbb{R}^n$ of dimension $k$, we show that the magical graph with left degree $s=2$ yields a $(1\pm \epsilon)$ ${\ell}_2$-subspace embedding for $\mathcal{U}$, if the number of right vertices (the sketch size) $m = \mathcal{O}({k^2}/{\epsilon^2})$. The expander graph with $s = \mathcal{O}({\log k}/{\epsilon})$ yields a subspace embedding for $m = \mathcal{O}({k \log k}/{\epsilon^2})$. We also discuss the construction of sparse sketching matrices with reduced randomness using expanders based on error-correcting codes. Empirical results on various synthetic and real datasets show that these sparse graph sketching matrices work very well in practice.
翻译:近些年来,设计了各种草图矩阵的随机构造。 特别是, 我们探索了两种流行的稀释图表类别, 即扩张图表和魔法图表。 对于一个给定的子空间 $\ mathcal{U}\subseq \ mathb{ $n$ 基数的关键属性。 草图矩阵的关键属性是子空间嵌入 。 在本文中, 我们研究从稀疏的双面图中获得的草图矩阵, 即 $@ ell_ 2- subspace 嵌入 $\ masscal{U} 。 我们探索了两种流行的稀释图表类别, 即, 即, 膨胀的直径图和神奇的直径图 。 如果右螺旋( 缩略图大小) $m=macal$@masal=oqual_ macal_ roaddressional_ kral} 我们展示了这些直径=mamasal roal_ road_ roadsal_ road_ road_ road_ roma} road_ roal_ road_ road_ rol_ rol_ rol} roal_ rol_ rol_ rol_ rol_ rol_ rol_ rousal_ roal_ rous_ rousal_ rousal_ rol_ rol_ rol_ =x_