Understanding the great empirical success of artificial neural networks (NNs) from a theoretical point of view is currently one of the hottest research topics in computer science. In this paper we study the expressive power of NNs with rectified linear units from a combinatorial optimization perspective. In particular, we show that, given a directed graph with $n$ nodes and $m$ arcs, there exists an NN of polynomial size that computes a maximum flow from any possible real-valued arc capacities as input. To prove this, we develop the pseudo-code language Max-Affine Arithmetic Programs (MAAPs) and show equivalence between MAAPs and NNs concerning natural complexity measures. We then design a MAAP to exactly solve the Maximum Flow Problem, which translates to an NN of size $\mathcal{O}(m^2 n^2)$.
翻译:从理论角度理解人造神经网络的巨大成功经验,目前是计算机科学中最热门的研究课题之一。在本文中,我们从组合优化的角度研究用纠正线性单元的NNN的表达力。特别是,我们显示,根据一个用美元节点和美元弧值绘制的定向图表,存在一个多元尺寸的NN,它计算出从任何可能的实际价值弧能力中的最大流量作为投入。为了证明这一点,我们开发了假编码语言Max-Affine Airthmicetic 程序(MAAPs),并显示MAAPs和NNes在自然复杂度措施方面的等同性。然后我们设计了一种MAAP,以完全解决最大流动问题,它相当于$\mathcal{O}(m2 n ⁇ 2美元)的NNNN。