Understanding the great empirical success of artificial neural networks (NNs) from a theoretical point of view is currently one of the hottest research topics in computer science. In this paper we study the expressive power of NNs with rectified linear units from a combinatorial optimization perspective. In particular, we show that, given a directed graph with $n$ nodes and $m$ arcs, there exists an NN of polynomial size that computes a maximum flow from any possible real-valued arc capacities as input. To prove this, we develop the pseudo-code language Max-Affine Arithmetic Programs (MAAPs) and show equivalence between MAAPs and NNs concerning natural complexity measures. We then design a MAAP to exactly solve the Maximum Flow Problem, which translates to an NN of size $\mathcal{O}(m^2 n^2)$.


翻译:从理论角度理解人造神经网络的巨大成功经验,目前是计算机科学中最热门的研究课题之一。在本文中,我们从组合优化的角度研究用纠正线性单元的NNN的表达力。特别是,我们显示,根据一个用美元节点和美元弧值绘制的定向图表,存在一个多元尺寸的NN,它计算出从任何可能的实际价值弧能力中的最大流量作为投入。为了证明这一点,我们开发了假编码语言Max-Affine Airthmicetic 程序(MAAPs),并显示MAAPs和NNes在自然复杂度措施方面的等同性。然后我们设计了一种MAAP,以完全解决最大流动问题,它相当于$\mathcal{O}(m2 n ⁇ 2美元)的NNNN。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
39+阅读 · 2020年3月9日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
9+阅读 · 2020年2月15日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员