Large language models (LLM) have proven to be effective at automated program repair (APR). However, using LLMs can be costly, with companies invoicing users by the number of tokens. In this paper, we propose CigaR, the first LLM-based APR tool that focuses on minimizing the repair cost. CigaR works in two major steps: generating a first plausible patch and multiplying plausible patches. CigaR optimizes the prompts and the prompt setting to maximize the information given to LLMs using the smallest possible number of tokens. Our experiments on 429 bugs from the widely used Defects4J and HumanEval-Java datasets shows that CigaR reduces the token cost by 73%. On average, CigaR spends 127k tokens per bug while the baseline uses 467k tokens per bug. On the subset of bugs that are fixed by both, CigaR spends 20k per bug while the baseline uses 608k tokens, a cost saving of 96%. Our extensive experiments show that CigaR is a cost-effective LLM-based program repair tool that uses a low number of tokens to automatically generate patches.
翻译:暂无翻译