The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering $H$-minors for any fixed graph $H$, the planarity of $H$ is equivalent to the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds for packing and covering $H$-topological minors, for any fixed graph $H$, which easily implies Thomas' conjecture. In fact, we prove an even stronger statement in which those topological minors are rooted at any choice of prescribed subsets of vertices. A number of structural, extremal, or algorithmic results on $H$-topological minor free or $H$-minor free graphs have conclusions or requirements tied to properties of $H$. Classes of graphs that can half-integrally pack only a bounded number of $H$-topological minors or $H$-minors are more general topological minor-closed or minor-closed families whose minimal obstructions are more complicated than $H$. Our theorem provides a general machinery to extend those results to those more general classes of graphs without losing their tight connection to $H$.
翻译:包装问题和覆盖问题是图形理论中两个最一般的问题。 托马斯推测, 如果包装问题的解决办法允许为一半的美元。 当这两个问题的最佳解决方案被彼此的功能捆绑在一起时, 自然属性就具有两种特性。 罗伯逊和西摩尔证明, 当任何固定图形的包装和覆盖$H$- 美元时, 任何固定图形的平面价值等于$H$, 这很容易意味着托马斯的直线值。 事实上, 托马斯推测说, 如果包装问题的解决办法允许是一半的, 自然属性就不再需要。 在本文中, 我们证明, Erd\ H{ o}- P\ 和 Seymour 的半异性属性版本用于包装和覆盖$- 美元- 未成年人, 任何固定的平面值 $- 的平面价值, 我们的平面图未成年人的最小性表示, 其最小的最小的平面值数字- 美元- 或平面结构- 的平面结构- 或平面结构- 的结果比普通的平面的平面的平面的平面的平面的平面的平面数据- 能够提供更多的结构- 数字- 或平面的平面- 等的平面- 的平面- 的平面- 或平面- 的平面- 的平质的平面- 的平面- 或平面- 平面- 能够提供这些平面- 的平面- 的平面- 或平面- 平面- 等- 等- 等- 等- 或平面- 的平面- 的平面- 的平的平的平面- 等- 或平面- 等- 等- 等- 或平面- 等- 等- 等- 或平面- 或平- 或平面- 或平面- 等- 等- 等- 或平面- 或平面- 等- 等- 等- 等- 等- 等- 或平- 或平结构- h- 或平面- 等- 或平面- 等- 等- 等- 等- 等- 或平面-