It follows from the Marcus-Spielman-Srivastava proof of the Kadison-Singer conjecture that if $G=(V,E)$ is a $\Delta$-regular dense expander then there is an edge-induced subgraph $H=(V,E_H)$ of $G$ of constant maximum degree which is also an expander. As with other consequences of the MSS theorem, it is not clear how one would explicitly construct such a subgraph. We show that such a subgraph (although with quantitatively weaker expansion and near-regularity properties than those predicted by MSS) can be constructed with high probability in linear time, via a simple algorithm. Our algorithm allows a distributed implementation that runs in $\mathcal O(\log n)$ rounds and does $\mathcal O(n)$ total work with high probability. The analysis of the algorithm is complicated by the complex dependencies that arise between edges and between choices made in different rounds. We sidestep these difficulties by following the combinatorial approach of counting the number of possible random choices of the algorithm which lead to failure. We do so by a compression argument showing that such random choices can be encoded with a non-trivial compression. Our algorithm bears some similarity to the way agents construct a communication graph in a peer-to-peer network, and, in the bipartite case, to the way agents select servers in blockchain protocols.


翻译:Kadison- Singer 预测的 Marcus- Spielman- Silvastavatava 的 Marcus- Spielman- Slivastata 证明, Kadison- Singer 的假设显示, 如果$G=( V, E) 是一个 $Delta$ 常规密集扩张器, 那么就会有一个由边缘引发的 $H=( V, E_H) 美元, 恒定最大度为 $G$ G$, 恒定最大度为 扩展器。 和 MSS 论的其他后果一样, 人们如何明确构建这样的子图。 我们显示, 这样的子图( 虽然在数量上比 MSS 预测的扩展和接近规律性) 可以通过简单的算法在线性时间以高的概率构建。 我们的算法允许以 $mathcaral O (\ log n) 回合运行一个分布在$mathcal O (n) $\ massalal O (n) commission commissional commission commissional) commission commission commissional 。 我们可以通过算算算算算出一个不及一个类似的路径。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
inpluslab
8+阅读 · 2019年10月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月3日
Arxiv
0+阅读 · 2021年5月2日
Arxiv
0+阅读 · 2021年5月1日
Arxiv
0+阅读 · 2021年4月30日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员