We consider parametric families of partial differential equations--PDEs where the parameter $\kappa$ modifies only the (1,1) block of a saddle point matrix product of a discretization below. The main goal is to develop an algorithm that removes, as much as possible, the dependence of iterative solvers on the parameter $\kappa$. The algorithm we propose requires only one matrix factorization which does not depend on $\kappa$, therefore, allows to reuse it for solving very fast a large number of discrete PDEs for different $\kappa$ and forcing terms. The design of the proposed algorithm is motivated by previous works on natural factor of formulation of the stiffness matrices and their stable numerical solvers. As an application, in two dimensions, we consider an iterative preconditioned solver based on the null space of Crouzeix-Raviart discrete gradient represented as the discrete curl of $P_1$ conforming finite element functions. For the numerical examples, we consider the case of random coefficient pressure equation where the permeability is modeled by an stochastic process. We note that contrarily from recycling Krylov subspace techniques, the proposed algorithm does not require fixed forcing terms.
翻译:我们考虑的是部分差分方程- PDE 的参数直方方程- PDE 。 参数 $\ kappa$ 仅修改以下离散的马鞍点矩阵产品(1, 1) 块块块 。 主要目标是开发一种算法, 尽可能消除迭代求解器对参数$\ kappa$的依赖。 我们提议的算法只需要一个不依赖$\ kappa$ 的矩阵因子化系数化, 从而允许再利用它快速解决大量离散的 PDE, 用于不同的 $\ kappaa$ 和强制条件 。 拟议的算法的设计受以前关于坚固矩阵及其稳定的数字解算器的自然因子的工程的驱动。 作为两个层面的应用, 我们考虑一个基于Crouzix- Raviart 离散梯的空空空间的迭代性先决条件解源解算法, 以$P_ 1 uncol 来代表符合一定的元素功能。 关于数字示例, 我们考虑的是随机系数压力方程式压力方程式, 其中的参数是用一个可建模化的模型, 我们注意到, 要求反地回收Kslovry 。