Game comonads have brought forth a new approach to studying finite model theory categorically. By representing model comparison games semantically as comonads, they allow important logical and combinatorial properties to be exressed in terms of their Eilenberg-Moore coalgebras. As a result, a number of results from finite model theory, such as preservation theorems and homomorphism counting theorems, have been formalised and parameterised by comonads, giving rise to new results simply by varying the comonad. In this paper we study the limits of the comonadic approach in the combinatorial and homomorphism-counting aspect of the theory, regardless of whether any model comparison games are involved. We show that any standard graph parameter has a corresponding comonad, classifying the same class. This comonad is constructed via a simple Kan extension formula, making it the initial solution to this problem and, furthermore, automatically admitting a homomorphism-counting theorem.
翻译:游戏线条带来了一种明确研究有限模型理论的新方法。 通过将模型比较游戏的语义作为共鸣来代表, 它们允许以艾伦堡- 摩尔的煤星数来表达重要的逻辑和组合属性。 结果, 有限模型理论的一些结果, 如保存定理和单词数等同形态论, 已经被共鸣正式化和参数化, 仅仅通过改变共鸣而产生新的结果 。 在本文中, 我们研究了该理论的组合和共鸣计算方面的共鸣法方法的局限性, 不论是否涉及任何模式比较游戏 。 我们显示任何标准图形参数都有相应的共角, 对同一类进行分类 。 此共奏是由简单的 Kan 扩展公式构建的, 使它成为这一问题的初始解决方案, 并且 自动承认对同质论的计算公式 。