The identification and segmentation of moderate-severe traumatic brain injury (TBI) lesions pose a significant challenge in neuroimaging. This difficulty arises from the extreme heterogeneity of these lesions, which vary in size, number, and laterality, thereby complicating downstream image processing tasks such as image registration and brain parcellation, reducing the analytical accuracy. Thus, developing methods for highly accurate segmentation of TBI lesions is essential for reliable neuroimaging analysis. This study aims to develop an effective automated segmentation pipeline to automatically detect and segment TBI lesions in T1-weighted MRI scans. We evaluate multiple approaches to achieve accurate segmentation of the TBI lesions. The core of our pipeline leverages various architectures within the nnUNet framework for initial segmentation, complemented by post-processing strategies to enhance evaluation metrics. Our final submission to the challenge achieved an accuracy of 0.8451, Dice score values of 0.4711 and 0.8514 for images with and without visible lesions, respectively, with an overall Dice score of 0.5973, ranking among the top-6 methods in the AIMS-TBI 2025 challenge. The Python implementation of our pipeline is publicly available.
翻译:中重度创伤性脑损伤(TBI)病灶的识别与分割是神经影像学中的一项重大挑战。这一困难源于此类病灶的高度异质性,其大小、数量及偏侧性各不相同,从而给下游图像处理任务(如图像配准和脑区分割)带来复杂性,并降低了分析准确性。因此,开发能够高精度分割TBI病灶的方法对于可靠的神经影像分析至关重要。本研究旨在开发一种有效的自动化分割流程,以在T1加权MRI扫描中自动检测并分割TBI病灶。我们评估了多种方法以实现对TBI病灶的精确分割。该流程的核心在于利用nnUNet框架内的多种架构进行初始分割,并结合后处理策略以提升评估指标。我们在挑战赛中的最终提交结果达到了0.8451的准确率,对于存在可见病灶和未见病灶的图像,其Dice分数分别为0.4711和0.8514,总体Dice分数为0.5973,在AIMS-TBI 2025挑战赛中位列前六名。该流程的Python实现已公开提供。