We carry out quantitative studies on the Green operator $ \hat{\mathscr G}$ associated with the Born equation, an integral equation that models electromagnetic scattering, building the strong stability of the evolution semigroup $\{\exp(-i\tau\hat{\mathscr G})|\tau\geq0\} $ on polynomial compactness and the Arendt-Batty-Lyubich-V\~u theorem. The strongly-stable evolution semigroup inspires our proposal of a non-perturbative method to solve the light scattering problem and improve the Born approximation.
翻译:我们对绿色运算商$\h6mathscr G}$\\mathscr G$进行量化研究,该等式是模拟电磁散射的一个整体方程式,使进化半半组${ax(-i\tau\hat_mathscr G})}} ⁇ tau\geq0}$(多元紧凑)和Arendt-Batty-Lyubich-V ⁇ u the Theorem 。 强稳的进化半组激励我们提出一种非渗透性方法来解决光散射问题,改善Born近似。