Tracking-by-detection is a very popular framework for single object tracking which attempts to search the target object within a local search window for each frame. Although such local search mechanism works well on simple videos, however, it makes the trackers sensitive to extremely challenging scenarios, such as heavy occlusion and fast motion. In this paper, we propose a novel and general target-aware attention mechanism (termed TANet) and integrate it with tracking-by-detection framework to conduct joint local and global search for robust tracking. Specifically, we extract the features of target object patch and continuous video frames, then we concatenate and feed them into a decoder network to generate target-aware global attention maps. More importantly, we resort to adversarial training for better attention prediction. The appearance and motion discriminator networks are designed to ensure its consistency in spatial and temporal views. In the tracking procedure, we integrate the target-aware attention with multiple trackers by exploring candidate search regions for robust tracking. Extensive experiments on both short-term and long-term tracking benchmark datasets all validated the effectiveness of our algorithm. The project page of this paper can be found at \url{https://sites.google.com/view/globalattentiontracking/home/extend}.
翻译:跟踪跟踪是一个非常受欢迎的单一物体跟踪框架,它试图在每一框架的本地搜索窗口中搜索目标对象。虽然这种本地搜索机制在简单的视频上运作良好,但是它使跟踪者对极具挑战性的情景敏感,例如密集隔离和快速运动。在本文件中,我们建议建立一个创新的和一般的目标认知关注机制(名为TANet),并将它与跟踪和跟踪跟踪框架结合起来,以便进行地方和全球联合搜索以进行稳健跟踪。具体地说,我们提取目标对象补丁和连续视频框架的特征,然后将它们连接并输入一个解码器网络,以生成有目标意识的全球关注地图。更重要的是,我们利用对抗性培训进行更好的关注预测。外观和运动歧视网络旨在确保其在空间和时间视角上的一致性。在跟踪过程中,我们通过探索候选人搜索区域以进行稳健跟踪,将目标识别关注与多个跟踪者结合起来。我们在短期和长期跟踪基准数据集上进行广泛的实验,从而验证了我们的算法的有效性。我们的项目页面是:全球轨道/轨道。