In this paper we study oriented bipartite graphs. In particular, we introduce bitransitive graphs and bitournaments. Several characterizations of bitransitive bitournaments are obtained. Next we prove the Caccetta-H$\ddot{\textrm{a}}$ggkvist Conjecture for oriented bipartite graphs for some cases for which it is unsolved in general. We introduce the concept of oriented odd-even graphs and (undirected) odd-even graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. Next we introduce Goldbach graphs which are special type of odd-even graphs. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other related conjectures are related to various parameters of Goldbach graphs. We study nature of degrees of vertices and independent sets of Goldbach graphs. Finally we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for small number of vertices.


翻译:在本文中,我们研究双面图。 特别是, 我们使用双面图和双向图。 我们用它们来描述双面图和双向双面图。 事实上, 我们显示任何双面图( 以循环为方向的双面图) 都可以用奇数图( 以奇数为方向的奇数图) 来表示。 我们为一些未解决的奇数图的关联性提供了一些条件。 我们引入了方向奇数图和( 未方向的)奇数图的概念。 我们用它们来描述双面图和以周期为方向的双面图。 事实上, 我们显示任何双面图( 以循环为方向的双面图) 都可以用奇数图( 以奇数为主的奇数图) 。 下一步我们引入了Goldbach 图表是奇数的特殊类型。 我们显示, 著名的Goldbach 平面图的直线图与Goldbach 图表的关联性能等。 其它相关的图性图数与我们与金本的金本性图的直数相关等等等的图数。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员