One of the symptoms of Parkinson's disease (PD) is hypomimia or reduced facial expressions. In this paper, we present a digital biomarker for PD that utilizes the study of micro-expressions. We analyzed the facial action units (AU) from 1812 videos of 604 individuals (61 with PD and 543 without PD, mean age 63.9 yo, sd 7.8 ) collected online using a web-based tool (www.parktest.net). In these videos, participants were asked to make three facial expressions (a smiling, disgusted, and surprised face) followed by a neutral face. Using techniques from computer vision and machine learning, we objectively measured the variance of the facial muscle movements and used it to distinguish between individuals with and without PD. The prediction accuracy using the facial micro-expressions was comparable to those methodologies that utilize motor symptoms. Logistic regression analysis revealed that participants with PD had less variance in AU6 (cheek raiser), AU12 (lip corner puller), and AU4 (brow lowerer) than non-PD individuals. An automated classifier using Support Vector Machine was trained on the variances and achieved 95.6% accuracy. Using facial expressions as a biomarker for PD could be potentially transformative for patients in need of physical separation (e.g., due to COVID) or are immobile.


翻译:Parkinson病(PD)症状之一是低米或减少面部表情。在本文中,我们为PD展示了一个数字生物标志,该标志利用微表情的研究。我们分析了1812年604个人(61个PD和543个没有PD,平均年龄63.9 yo, sd 7.8)的面部行动单元(AU)的1812视频(AU),从1812视频中分析了使用网络工具(www.parkestest.net)收集的604个人(61个PD和543个没有PD,平均年龄63.9 yo, sd 7.8)的面部病症状。在这些视频中,要求参与者制作三种面部表(微笑、厌恶和惊讶的脸),然后用中立的脸部图像和机器学习技术,我们客观地测量了面部肌肉运动的差异。使用面部显像显像的预测准确度与使用运动症状的方法相似。 逻辑回归分析显示,PD参与者在AU6 (cheek higher) 、A12 (滑角角角拉车) 和 AU4 (row brow lower) 比非PI4 (b) 个人更低个人。使用支持VID 机进行自动剖分解分析,可能使用PM 需要95.6。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
专知会员服务
61+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
A Compact Embedding for Facial Expression Similarity
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
专知会员服务
61+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员