We initiate the study of sublinear-time algorithms that access their input via an online adversarial erasure oracle. After answering each query to the input object, such an oracle can erase $t$ input values. Our goal is to understand the complexity of basic computational tasks in extremely adversarial situations, where the algorithm's access to data is blocked during the execution of the algorithm in response to its actions. Specifically, we focus on property testing in the model with online erasures. We show that two fundamental properties of functions, linearity and quadraticity, can be tested for constant $t$ with asymptotically the same complexity as in the standard property testing model. For linearity testing, we prove tight bounds in terms of $t$, showing that the query complexity is $\Theta(\log t)$. In contrast to linearity and quadraticity, some other properties, including sortedness and the Lipschitz property of sequences, cannot be tested at all, even for $t=1$. Our investigation leads to a deeper understanding of the structure of violations of linearity and other widely studied properties.


翻译:我们开始研究亚线性算法, 通过在线对抗消化器访问输入。 在回答每个输入对象的查询后, 这样的一个神器可以抹去美元输入值。 我们的目标是在极端敌对的情况下理解基本计算任务的复杂性, 因为在对它采取行动时, 算法对数据的访问受阻。 具体地说, 我们侧重于在模型中进行在线消化功能的财产测试。 我们显示, 功能的两个基本属性, 线性和四面性, 可以测试固定的美元, 与标准财产测试模型的同样复杂性。 对于线性测试, 我们用美元来证明, 查询的复杂性是 $\ Theta (\log t) 。 与线性和四面性相比, 某些其他属性, 包括排序和 Lipschitz 序列属性, 根本无法测试, 即使是为$t=1 。 我们的调查导致更深入地理解侵犯线性和其他广泛研究的属性的结构 。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员