In constrained convex optimization, existing methods based on the ellipsoid or cutting plane method do not scale well with the dimension of the ambient space. Alternative approaches such as Projected Gradient Descent only provide a computational benefit for simple convex sets such as Euclidean balls, where Euclidean projections can be performed efficiently. For other sets, the cost of the projections can be too high. To circumvent these issues, alternative methods based on the famous Frank-Wolfe algorithm have been studied and used. Such methods use a Linear Optimization Oracle at each iteration instead of Euclidean projections; the former can often be performed efficiently. Such methods have also been extended to the online and stochastic optimization settings. However, the Frank-Wolfe algorithm and its variants do not achieve the optimal performance, in terms of regret or rate, for general convex sets. What is more, the Linear Optimization Oracle they use can still be computationally expensive in some cases. In this paper, we move away from Frank-Wolfe style algorithms and present a new reduction that turns any algorithm A defined on a Euclidean ball (where projections are cheap) to an algorithm on a constrained set C contained within the ball, without sacrificing the performance of the original algorithm A by much. Our reduction requires O(T log T) calls to a Membership Oracle on C after T rounds, and no linear optimization on C is needed. Using our reduction, we recover optimal regret bounds [resp. rates], in terms of the number of iterations, in online [resp. stochastic] convex optimization. Our guarantees are also useful in the offline convex optimization setting when the dimension of the ambient space is large.


翻译:在限制的 convex 优化中,基于光球或剪切平面法的现有方法与环境空间的维度不相适应。 替代方法,如预测梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度。 替代方法, 如预测精度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度。 替代方法, 如预测精度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度。 但是,对于其他星系球状球形球形球形球形阵列, 预测结果预测效果最优。 此外, 以著名的法度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度阵列, 要求我们的精度梯度梯度梯度梯度阵列的精度梯度梯度梯度梯度阵列的精度梯度梯度梯度梯度阵列。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
凸优化及无约束最优化
AINLP
3+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
凸优化及无约束最优化
AINLP
3+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员