Existing frameworks for transfer learning are incomplete from a systems theoretic perspective. They place emphasis on notions of domain and task, and neglect notions of structure and behavior. In doing so, they limit the extent to which formalism can be carried through into the elaboration of their frameworks. Herein, we use Mesarovician systems theory to define transfer learning as a relation on sets and subsequently characterize the general nature of transfer learning as a mathematical construct. We interpret existing frameworks in terms of ours and go beyond existing frameworks to define notions of transferability, transfer roughness, and transfer distance. Importantly, despite its formalism, our framework avoids the detailed mathematics of learning theory or machine learning solution methods without excluding their consideration. As such, we provide a formal, general systems framework for modeling transfer learning that offers a rigorous foundation for system design and analysis.


翻译:从系统理论角度看,现有的转让学习框架不完全,它们强调领域和任务的概念,忽视结构和行为的概念。在这样做时,它们限制了在制订框架时能够将形式主义贯彻到何种程度。在这里,我们利用Mesarovician系统理论,将转让学习定义为组合关系,随后将转让学习的一般性质定性为数学结构。我们从我们的角度解释现有框架,超越现有框架,以界定可转让性、转让粗糙度和转移距离的概念。重要的是,尽管我们的框架是形式主义的,但我们避免了学习理论或机器学习解决方案方法的详细数学,而不排除它们的考虑。因此,我们提供了一个正式的通用系统框架,用于模拟转让学习,为系统设计和分析提供严格的基础。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
64+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员