Exploration is an essential component of reinforcement learning algorithms, where agents need to learn how to predict and control unknown and often stochastic environments. Reinforcement learning agents depend crucially on exploration to obtain informative data for the learning process as the lack of enough information could hinder effective learning. In this article, we provide a survey of modern exploration methods in (Sequential) reinforcement learning, as well as a taxonomy of exploration methods.


翻译:探索是强化学习算法的一个基本组成部分,在这种算法中,代理商需要学会如何预测和控制未知和往往是随机的环境。强化学习代理商主要依靠探索,为学习过程获取信息数据,因为缺乏足够的信息会妨碍有效学习。在本条中,我们提供了对(渐进式)强化学习中现代探索方法的调查,以及勘探方法分类。

1
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
9+阅读 · 2021年3月25日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
9+阅读 · 2021年3月25日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员