We develop the novel method of artificial barriers for scalar stochastic differential equations (SDEs) and use it to construct boundary-preserving numerical schemes for strong approximations of scalar SDEs, possibly with non-globally Lipschitz drift and diffusion coefficients, whose state-space is either bounded or half-bounded. The idea of artificial barriers is to augment the SDE with artificial barriers outside the state-space to not change the solution process, and then apply a boundary-preserving numerical scheme to the resulting reflected SDE (RSDE). This enables us to construct boundary-preserving numerical schemes with the same strong convergence rate as the strong convergence rate of the numerical scheme for the corresponding RSDE. Based on the method of artificial barriers, we construct two boundary-preserving schemes that we call the Artificial Barrier Euler-Maruyama (ABEM) scheme and the Artificial Barrier Euler-Peano (ABEP) scheme. We provide numerical experiments for the ABEM scheme and the numerical results agree with the obtained theoretical results.
翻译:暂无翻译