Vertical federated learning is a collaborative machine learning framework to train deep leaning models on vertically partitioned data with privacy-preservation. It attracts much attention both from academia and industry. Unfortunately, applying most existing vertical federated learning methods in real-world applications still faces two daunting challenges. First, most existing vertical federated learning methods have a strong assumption that at least one party holds the complete set of labels of all data samples, while this assumption is not satisfied in many practical scenarios, where labels are horizontally partitioned and the parties only hold partial labels. Existing vertical federated learning methods can only utilize partial labels, which may lead to inadequate model update in end-to-end backpropagation. Second, computational and communication resources vary in parties. Some parties with limited computational and communication resources will become the stragglers and slow down the convergence of training. Such straggler problem will be exaggerated in the scenarios of horizontally partitioned labels in vertical federated learning. To address these challenges, we propose a novel vertical federated learning framework named Cascade Vertical Federated Learning (CVFL) to fully utilize all horizontally partitioned labels to train neural networks with privacy-preservation. To mitigate the straggler problem, we design a novel optimization objective which can increase straggler's contribution to the trained models. We conduct a series of qualitative experiments to rigorously verify the effectiveness of CVFL. It is demonstrated that CVFL can achieve comparable performance (e.g., accuracy for classification tasks) with centralized training. The new optimization objective can further mitigate the straggler problem comparing with only using the asynchronous aggregation mechanism during training.


翻译:垂直粘合式学习是一个合作的机器学习框架,用于在垂直分割数据上培养深缩缩缩模型,并保护隐私。它吸引学术界和业界的极大关注。 不幸的是,在现实世界应用中应用大多数现有的纵向联合学习方法仍面临两个严峻的挑战。 首先,大多数现有的垂直粘合式学习方法有一个强烈的假设,即至少有一方持有所有数据样本的完整标签,而在许多实际情景中,这一假设并不令人满意,因为标签是横向分割的,各方只持有部分分类。现有的垂直粘合式学习方法只能使用部分标签,这可能导致端对端的反反向调整中不完全更新模型。第二,计算和通信资源有限的一些计算和通信资源将变得松散,并放慢培训的趋同速度。在垂直粘合式学习中,这种紧凑的问题将在横向分割标签的情景中被夸大。为了应对这些挑战,我们提出一个新的垂直粘合式学习框架,即直线式硬性硬性硬性刻式学习(CVFLLLL),这可能导致在端对等直径直径直径的实验中进行不适当的升级的升级的升级的升级的升级的升级校正缩校正校正校正校略性学习。 将降低校正升级的校正的校正升级升级升级升级升级升级的校正升级的校正升级的校正升级升级升级升级升级升级升级升级升级升级升级升级升级升级升级升级的校正能升级升级升级升级升级升级升级升级升级的升级升级升级的升级升级升级升级升级升级升级升级,可以提高。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
116+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
10+阅读 · 2021年3月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年5月1日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员