This paper introduces SigMaNet, a generalized Graph Convolutional Network (GCN) capable of handling both undirected and directed graphs with weights not restricted in sign nor magnitude. The cornerstone of SigMaNet is the Sign-Magnetic Laplacian ($L^{\sigma}$), a new Laplacian matrix that we introduce ex novo in this work. $L^{\sigma}$ allows us to bridge a gap in the current literature by extending the theory of spectral GCNs to (directed) graphs with both positive and negative weights. $L^{\sigma}$ exhibits several desirable properties not enjoyed by other Laplacian matrices on which several state-of-the-art architectures are based, among which encoding the edge direction and weight in a clear and natural way that is not negatively affected by the weight magnitude. $L^{\sigma}$ is also completely parameter-free, which is not the case of other Laplacian operators such as, e.g., the Magnetic Laplacian. The versatility and the performance of our proposed approach is amply demonstrated via computational experiments. Indeed, our results show that, for at least a metric, SigMaNet achieves the best performance in 15 out of 21 cases and either the first- or second-best performance in 21 cases out of 21, even when compared to architectures that are either more complex or that, due to being designed for a narrower class of graphs, should -- but do not -- achieve a better performance.


翻译:本文介绍SigMaNet(GCN),这是一个通用的图形革命网络(GCN),能够处理非方向和定向图形,其重量不受标志和数量限制。SigMaNet的基石是Sign-Magate Laplaceian (L ⁇ sigma}$),这是我们在此工作中引入的一个新的拉普拉西亚矩阵,我们在此工作中先头一试。$L ⁇ sgigma}美元使我们能够弥合当前文献中的差距,将光谱GCN的理论扩展至具有正重和负重的(方向)类图。$L ⁇ sigma}(GCN)展示了其他Laplacian矩阵所没有享受的一些可取的属性,而其他Laplacian矩阵则没有以这些属性为基础,其中将优势方向和重量编码成一个清晰而自然且不受重量影响的新矩阵。$Läsigma}($ ⁇ sigma)让我们能够弥合当前文献中的空白,因为其他Laplacecian操作者,例如Maglical Laplacecial Laplacecian (Magetal Laplace) lician) 等。$$$$$$1 and pact of pact of proup proup press not ex exed ex exual ex ex ex ex ex ex ex ex ex ex ex ex ex exal ex ex as as as as as as asureal lautal as as asureal asureal asureal lautes lautes lautes lautes lautes lautes -- -- -- -- -- -- -- -- -- -- -- -- -- lautes -- as -- lautusal -- as -- as -- as -- as -- as -- as -- -- co -- lausional -- coupal -- coal -- ex -- coal -- coal -- lais -- laut -- co -- co -- ex -- ex -- ex -- ex -- co -- ex -- ex -- co -- ex -- ex -- ex -- ex -- ex --

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Are More Layers Beneficial to Graph Transformers?
Arxiv
0+阅读 · 2023年3月1日
Arxiv
0+阅读 · 2023年2月28日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员