We present a general framework for using existing data to estimate the efficiency gain from using a covariate-adjusted estimator of a marginal treatment effect in a future randomized trial. We describe conditions under which it is possible to define a mapping from the distribution that generated the existing external data to the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator. Under conditions, these relative efficiencies approximate the ratio of sample size needed to achieve a desired power. We consider two situations where the outcome is either fully or partially observed and several treatment effect estimands that are of particular interest in most trials. For each such estimand, we develop a semiparametrically efficient estimator of the relative efficiency that allows for the application of flexible statistical learning tools to estimate the nuisance functions and an analytic form of a corresponding Wald-type confidence interval. We also propose a double bootstrap scheme for constructing confidence intervals. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to data to estimate the relative efficiency of using covariate adjustment in Covid-19 therapeutic trials.
翻译:我们提出了一个总体框架,用于使用现有数据来估计未来随机试验中使用边际治疗效应的共变调整估计法的效率收益。我们描述了一个总框架,在这种条件下,有可能从产生现有外部数据的分布图中,从产生现有外部数据的共变调整估测法的相对效率与未经调整估测法的相对效率进行界定。在条件条件下,这些相对效率大致相当于获得所需功率所需的样本规模之比。我们考虑两种情况,即结果得到完全或部分观察,以及若干治疗效果估计法在大多数试验中特别值得注意。我们为每一种这种估计法制定了一个半对称效率估测法,以便能够应用灵活的统计学习工具来估计相应的Wald型信任期的干扰功能和分析形式。我们还提议了一个建立信任期的双轨制计划。我们通过模拟研究来展示拟议方法的绩效,并运用这些方法来估计使用Covid-19治疗试验的共变率调整的相对效率。