Targeted maximum likelihood estimation is a general methodology combining flexible ensemble learning and semiparametric efficiency theory in a two-step procedure for estimation of causal parameters. Proposed targeted maximum likelihood procedures for survival and competing risks analysis have so far focused on events taken values in discrete time. We here present a targeted maximum likelihood estimation procedure for event times that take values in R+. We focuson the estimation of intervention-specific mean outcomes with stochastic interventions on a time-fixed treatment. For data-adaptive estimation of nuisance parameters, we propose a new flexible highly adaptive lasso estimation method for continuous-time intensities that can be implemented with L1-penalized Poisson regression. In a simulation study the targeted maximum likelihood estimator based on the highly adaptive lasso estimator proves to be unbiased and achieve proper coverage in agreement with the asymptotic theory and further displays efficiency improvements relative to a Kaplan-Meier approach.
翻译:有针对性的最大可能性估算是一种一般性方法,该方法将灵活的混合学习和半参数效率理论结合到一个用于估计因果参数的两步程序中。拟议的生存和相互竞争的风险分析目标最大可能性程序迄今为止侧重于在离散时间里发生的事件。我们在此对在R+中发生的事件时间提出一个目标最大可能性估算程序。我们侧重于对特定干预的平均结果进行估算,同时对时间固定处理进行随机干预。关于对干扰参数的数据适应性估算,我们建议采用一种新的灵活、高度适应性拉索估计方法,用于持续时间强度的估算方法,该方法可以用L1和Poisson同步回归法加以实施。在一项模拟研究中,基于高度适应的拉索估计器的定向最大可能性估计方法证明是不偏不倚的,符合无损理论,并实现适当的覆盖。我们提出了与卡普兰-米伊方法相比,进一步展示了效率的提高。