In this work we develop a novel characterization of marginal causal effect and causal bias in the continuous treatment setting. We show they can be expressed as an expectation with respect to a conditional probability distribution, which can be estimated via standard statistical and probabilistic methods. All terms in the expectations can be computed via automatic differentiation, also for highly non-linear models. We further develop a new complete criterion for identifiability of causal effects via covariate adjustment, showing the bias equals zero if the criterion is met. We study the effectiveness of our framework in three different scenarios: linear models under confounding, overcontrol and endogenous selection bias; a non-linear model where full identifiability cannot be achieved because of missing data; a simulated medical study of statins and atherosclerotic cardiovascular disease.
翻译:在这项工作中,我们发展了一种对持续治疗环境中的边际因果关系和因果关系的新型定性,我们表明,它们可以表现为对有条件概率分布的预期,可以通过标准的统计和概率方法加以估计;预期中的所有术语都可以通过自动区分计算,也可以对高度非线性模型进行计算;我们进一步制定了新的完整的标准,通过共变调整来识别因果关系,表明如果符合标准,偏见等于零;我们用三种不同的情况来研究我们框架的有效性:线性模型在混杂、控制过度和内生选择偏差下;非线性模型,由于缺少数据,无法完全识别;对统计系统进行模拟医学研究,对静脉血管疾病进行模拟医学研究。