Fluid-flow devices with low dissipation, but high contact area, are of importance in many applications. A well-known strategy to design such devices is multi-scale topology optimization (MTO), where optimal microstructures are designed within each cell of a discretized domain. Unfortunately, MTO is computationally very expensive since one must perform homogenization of the evolving microstructures, during each step of the homogenization process. As an alternate, we propose here a graded multiscale topology optimization (GMTO) for designing fluid-flow devices. In the proposed method, several pre-selected but size-parameterized and orientable microstructures are used to fill the domain optimally. GMTO significantly reduces the computation while retaining many of the benefits of MTO. In particular, GMTO is implemented here using a neural-network (NN) since: (1) homogenization can be performed off-line, and used by the NN during optimization, (2) it enables continuous switching between microstructures during optimization, (3) the number of design variables and computational effort is independent of number of microstructure used, and, (4) it supports automatic differentiation, thereby eliminating manual sensitivity analysis. Several numerical results are presented to illustrate the proposed framework.
翻译:在许多应用中,低散射度但高接触面积的流体流体装置十分重要。设计这种装置的一个众所周知的战略是多尺度的地形优化(MTO),在其中每个离散域内的每个单元格中设计出最佳微结构。不幸的是,MTO计算成本非常昂贵,因为一个人必须在同化过程的每个步骤中对不断发展的微结构进行同质化。作为替代办法,我们在此建议为设计流体流体装置采用一个分级的多尺度的地形优化(GMTO),在拟议方法中,使用若干预选但大小分计和可调整的微结构来最佳地填补域。GMTO大量减少计算,同时保留MTO的许多好处。 特别是,在这里使用一个神经网络(NN)实施GTO,因为:(1) 可以在离线上进行同质化,并在优化过程中由NN使用,(2) 在优化过程中,它可以使微结构之间不断转换,(3) 设计变量的数量和计算努力与所使用的微结构的数目无关,并且它支持若干项拟议的数字敏感性分析。