Approximate computing is known for enhancing deep neural network accelerators' energy efficiency by introducing inexactness with a tolerable accuracy loss. However, small accuracy variations may increase the sensitivity of these accelerators towards undesired subtle disturbances, such as permanent faults. The impact of permanent faults in accurate deep neural network (AccDNN) accelerators has been thoroughly investigated in the literature. Conversely, the impact of permanent faults and their mitigation in approximate DNN (AxDNN) accelerators is vastly under-explored. Towards this, we first present an extensive fault resilience analysis of approximate multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs) using the state-of-the-art Evoapprox8b multipliers in GPU and TPU accelerators. Then, we propose a novel fault mitigation method, i.e., fault-aware retuning of weights (Fal-reTune). Fal-reTune retunes the weights using a weight mapping function in the presence of faults for improved classification accuracy. To evaluate the fault resilience and the effectiveness of our proposed mitigation method, we used the most widely used MNIST, Fashion-MNIST, and CIFAR10 datasets. Our results demonstrate that the permanent faults exacerbate the accuracy loss in AxDNNs compared to the AccDNN accelerators. For instance, a permanent fault in AxDNNs can lead to 56\% accuracy loss, whereas the same faulty bit can lead to only 4\% accuracy loss in AccDNN accelerators. We empirically show that our proposed Fal-reTune mitigation method improves the performance of AxDNNs up to 98%, even with fault rates of up to 50%. Furthermore, we observe that the fault resilience in AxDNNs is orthogonal to their energy efficiency.


翻译:使用精确的深神经网络(ACCDNNN)加速器的永久断层影响。相反,永久断层的影响及其在近DNNN(AxDNNN)加速器(AxDNNNN)加速器中的缓解作用远远没有得到充分利用。为此,我们首先对近似多层透视(MLPs)和飞动神经网络(CNNS)等不理想的微妙扰动的精确度进行了广泛的误差率分析。在GPU和TPU加速器中,对精确度永久断层的影响进行了彻底调查。然后,我们提出了一种新型的错误缓解方法,即,对重力(AxDNNNN(AxDNNN)的错误感知觉再调(FRetune)。为此,我们首先对多层透析器(MNLD)的准确度进行了广泛的误差率分析,而我们使用的方法能显示我们长期数据解算法中的惯性效率。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月12日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员