In this paper, we solve the problem of computing the inverse in Clifford algebras of arbitrary dimension. We present basis-free formulas of different types (explicit and recursive) for the determinant, other characteristic polynomial coefficients, adjugate, and inverse in real Clifford algebras (or geometric algebras) over vector spaces of arbitrary dimension $n$. The formulas involve only the operations of multiplication, summation, and operations of conjugation without explicit use of matrix representation. We use methods of Clifford algebras (including the method of quaternion typification proposed by the author in previous papers and the method of operations of conjugation of special type presented in this paper) and generalizations of numerical methods of matrix theory (the Faddeev-LeVerrier algorithm based on the Cayley-Hamilton theorem; the method of calculating the characteristic polynomial coefficients using Bell polynomials) to the case of Clifford algebras in this paper. We present the construction of operations of conjugation of special type and study relations between these operations and the projection operations onto fixed subspaces of Clifford algebras. We use this construction in the analytical proof of formulas for the determinant, other characteristic polynomial coefficients, adjugate, and inverse in Clifford algebras. The basis-free formulas for the inverse give us basis-free solutions to linear algebraic equations, which are widely used in computer science, image and signal processing, physics, engineering, control theory, etc. The results of this paper can be used in symbolic computation.
翻译:在本文中,我们解决了在任意维度矢量空间上计算反差值的问题。 我们使用克里福德代数的方法( 包括作者在先前论文中建议的基数符号化方法, 以及本文中特殊类型计算机公式的混和操作方法), 以及矩阵理论数字法的概括化( 根据 Cayley- Hamilton 的直角算法; 使用 Bell 多边计算法来计算典型的混结系数的方法) 来分析克里福德代数法( 包括作者在先前论文中建议的基数符号化方法, 以及本文中显示的特殊类型计算机公式的计算方法) 。 我们展示了基数理论( Faddeev- Leberrierrier 算法, 以 Cayley- Hamilton 的测算法为基础; 使用 Bell 多边计算模型解算法, 以及不明显使用矩阵解算法 。 在本文中, 用于 克里福德代数计算模型处理的直径等值计算法的计算方法。 我们展示了模型模型模型模型模型模型模型模型模型的计算操作 。