Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadratic constraints. This particular description allows us to pose the Lipschitz constant estimation problem as a semidefinite program (SDP). The resulting SDP can be adapted to increase either the estimation accuracy (by capturing the interaction between activation functions of different layers) or scalability (by decomposition and parallel implementation). We illustrate the utility of our approach with a variety of experiments on randomly generated networks and on classifiers trained on the MNIST and Iris datasets. In particular, we experimentally demonstrate that our Lipschitz bounds are the most accurate compared to those in the literature. We also study the impact of adversarial training methods on the Lipschitz bounds of the resulting classifiers and show that our bounds can be used to efficiently provide robustness guarantees.


翻译:深入神经网络(DNN)对Lipschitz常量的严格估计在许多应用中非常有用,从分类者的稳健认证到对闭环系统进行稳定分析,这些应用包括强化学习控制器。文献中估算Lipschitz常量的现有方法要么缺乏准确性,要么缩放能力差。在本文中,我们提出了一个Convex优化框架,以准确和高效地计算Lipschitz常量的保障上限。我们的主要想法是将激活功能解释为卷轴潜在功能的梯度。因此,它们满足了可被二次约束限制描述的某些特性。这种特定描述使我们能够将Lipschitz常量的估计问题作为半确定性程序(SDP)提出。由此产生的SDP可以调整,以提高估算准确性(通过捕捉不同层的激活功能之间的相互作用)或缩放性(通过分解和平行执行)。我们用的方法用各种随机生成的网络的实验以及经MNIST和Iris数据集培训的分类方法来说明其效用。特别是,我们实验性地展示了Lipsch的常数约束性研究,并展示了我们所运用的精准性研究方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员