项目名称: DNA甲基化和去甲基化在神经干细胞向星形胶质细胞分化过程中的作用机制

项目编号: No.31271371

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 生物科学

项目作者: 孙毅

作者单位: 同济大学

项目金额: 100万元

中文摘要: 神经干细胞具有分化为神经元和神经胶质细胞的潜能,其分化遵循神经元分化在先,神经胶质分化在后的原则。本课题组前期研究发现DNA从头(de novo)甲基化酶Dnmt3a参与调控这一分化过程。为了深入研究DNA甲基化和去甲基化对星形胶质细胞分化的影响,本项目拟采运用功能获得和缺失实验,在Dnmt3a基因敲除小鼠和ShRNA-tet转染的神经干细胞模型中,探究甲基化酶Dnmt3a与去甲基化酶Tet在神经干细胞向星形胶质细胞分化过程中的功能及分子机制;采用全基因组Dnmt3a和Tet占位分析以及MedIP-seq,50H-MedIP-seq和组蛋白修饰的ChIP-chip技术,揭示其在星形胶质细胞分化关键基因上的作用方式。最后,我们将研究上游潜在调控元件Olig2在神经干细胞向星形胶质细胞分化中对Tet的作用。本项目的实施将揭示神经干细胞分化过程中DNA甲基化和去甲基化酶协同调控的表观遗传机制。

中文关键词: Dnmt3a;Tet;DNA 甲基化;星形胶质细胞分化;表观遗传调控

英文摘要: Neural stem/progenitor cells(NPCs) can differentiate into neurons and glia. The principle of NPC differentiation follows "neuron fist, glia second"role. Previous studies from our lab has revealed that a de nove DNA methyltransferase, Dnmt3a, is involved in epigenetic regulation of the sequential lineage differentiation of neurons and glia. It remains a challenge, however, to reveal detailed underlying molecular mechanisms by which DNA methylation and demethylation regulate astrogliogenesis in a coordinated manner. In this research project, we propose to study the function of Dnmt3a and Tet family members in regulating astroglial differentiation, via gain and lose function analyses, both in vitro and in vivo. In addition, using whole genome oppupancy analyses through chromatin immunoprecipitation coupled with next-generation seguencing (ChIP-seq) as well as MeDIP-seq and 5OHMeDIP-seq to reveal the genome-wide DNA methylation/demethylation network that ochestrates the gliogenesis process. Lastly, we will study a potential upstream regulator, olig2, for tet family proteins, which are tightly regulated during NPC differentiation along the astroglial lineage. This proposed study will reveal the coordination between the two opposing DNA methylation/demethylation epigenetic forces in regulating cell fate specification

英文关键词: Dnmt3a;Tet;DNA methylation;astrogliogenesis;epigenetic regulation

成为VIP会员查看完整内容
0

相关内容

《日本在智慧农业上的举措》最新报告,24页PPT
专知会员服务
57+阅读 · 2022年3月23日
【WWW2022】再思考图卷积网络的知识图谱补全
专知会员服务
34+阅读 · 2022年2月15日
专知会员服务
96+阅读 · 2021年5月25日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
专知会员服务
38+阅读 · 2020年11月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
63+阅读 · 2020年8月19日
孩子,别熬夜了,伤DNA
量子位
0+阅读 · 2021年11月25日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
《日本在智慧农业上的举措》最新报告,24页PPT
专知会员服务
57+阅读 · 2022年3月23日
【WWW2022】再思考图卷积网络的知识图谱补全
专知会员服务
34+阅读 · 2022年2月15日
专知会员服务
96+阅读 · 2021年5月25日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
专知会员服务
38+阅读 · 2020年11月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
63+阅读 · 2020年8月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员