The spatiotemporal dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate and stable reduced-order models challenging. The overarching objective of this paper is to propose a nonlinear decomposition of the turbulent state for a reduced-order representation of the dynamics. We divide the turbulent flow into a spatial problem and a temporal problem. First, we compute the latent space, which is the manifold onto which the turbulent dynamics live (i.e., it is a numerical approximation of the turbulent attractor). The latent space is found by a series of nonlinear filtering operations, which are performed by a convolutional autoencoder (CAE). The CAE provides the decomposition in space. Second, we predict the time evolution of the turbulent state in the latent space, which is performed by an echo state network (ESN). The ESN provides the decomposition in time. Third, by assembling the CAE and the ESN, we obtain an autonomous dynamical system: the convolutional autoncoder echo state network (CAE-ESN). This is the reduced-order model of the turbulent flow. We test the CAE-ESN on a two-dimensional flow. We show that, after training, the CAE-ESN (i) finds a latent-space representation of the turbulent flow that has less than 1% of the degrees of freedom than the physical space; (ii) time-accurately and statistically predicts the flow in both quasiperiodic and turbulent regimes; (iii) is robust for different flow regimes (Reynolds numbers); and (iv) takes less than 1% of computational time to predict the turbulent flow than solving the governing equations. This work opens up new possibilities for nonlinear decompositions and reduced-order modelling of turbulent flows from data.
翻译:动荡流的表面时空动态是混乱和难以预测的。 这使得设计准确和稳定的减少顺序模型具有挑战性。 本文的首要目标是提出动荡状态的非线性分解以降低动态的顺序代表。 我们将动荡流分解为空间问题和时间问题。 首先, 我们计算出动荡动态所赖以存在的潜伏空间( 即, 是动荡吸引者的数字近似值 ) 。 潜伏空间是由一系列非线性过滤操作所发现的, 由同步自动流动( CAE- ESN ) 进行。 CAE 提供空间分解。 其次, 我们预测的是由回声状态网络( ESNN) 所经演算的潜伏状态的演变时间。 第三, 将CAE 和 ESNSN 的动态系统组合起来, 我们获得的是动态自动电离心电流( CAE- NES ) 和 电流后期数据流( 我们测试的流流流值为CAAA) 和 电流 后, 电流的流流 流( 电流- 电流为CAAAAAA) 和电流( 电流 电流 电流 电流 流 流 流 流 流 流 和电算 流 流 流 流 流 流 流 流 流 流 流 亚电流 低于CAAAAAAAAAAAAAA) 亚 流 亚 亚 亚 。