We address how to robustly interpret natural language refinements (or critiques) in recommender systems. In particular, in human-human recommendation settings people frequently use soft attributes to express preferences about items, including concepts like the originality of a movie plot, the noisiness of a venue, or the complexity of a recipe. While binary tagging is extensively studied in the context of recommender systems, soft attributes often involve subjective and contextual aspects, which cannot be captured reliably in this way, nor be represented as objective binary truth in a knowledge base. This also adds important considerations when measuring soft attribute ranking. We propose a more natural representation as personalized relative statements, rather than as absolute item properties. We present novel data collection techniques and evaluation approaches, and a new public dataset. We also propose a set of scoring approaches, from unsupervised to weakly supervised to fully supervised, as a step towards interpreting and acting upon soft attribute based critiques.


翻译:我们处理如何在建议者系统中强有力地解释自然语言改进(或批评)的问题。特别是在人文建议环境中,人们经常使用软属性来表达对项目的偏好,包括电影原创性、地点的灵敏性或食谱的复杂性等概念。虽然在建议者系统中广泛研究了二进制标记,软属性往往涉及主观和背景方面,无法以这种方式可靠地捕捉,也不能在知识库中作为客观的二进制真理。这在衡量软属性排名时也增加了重要的考虑因素。我们建议以个性化相对说明而不是绝对的项目属性来更自然地表达。我们提出了新的数据收集技术和评估方法,以及新的公共数据集。我们还提出了一套评分方法,从不受监督到监管薄弱到充分监督,作为解释和根据基于批评的软属性采取行动的一个步骤。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员