Understanding and modelling the performance of neural architectures is key to Neural Architecture Search (NAS). Performance predictors have seen widespread use in low-cost NAS and achieve high ranking correlations between predicted and ground truth performance in several NAS benchmarks. However, existing predictors are often designed based on network encodings specific to a predefined search space and are therefore not generalizable to other search spaces or new architecture families. In this paper, we propose a general-purpose neural predictor for NAS that can transfer across search spaces, by representing any given candidate Convolutional Neural Network (CNN) with a Computation Graph (CG) that consists of primitive operators. We further combine our CG network representation with Contrastive Learning (CL) and propose a graph representation learning procedure that leverages the structural information of unlabeled architectures from multiple families to train CG embeddings for our performance predictor. Experimental results on NAS-Bench-101, 201 and 301 demonstrate the efficacy of our scheme as we achieve strong positive Spearman Rank Correlation Coefficient (SRCC) on every search space, outperforming several Zero-Cost Proxies, including Synflow and Jacov, which are also generalizable predictors across search spaces. Moreover, when using our proposed general-purpose predictor in an evolutionary neural architecture search algorithm, we can find high-performance architectures on NAS-Bench-101 and find a MobileNetV3 architecture that attains 79.2% top-1 accuracy on ImageNet.


翻译:神经结构的性能理解和建模是神经结构搜索的关键。 性能预测器在低成本的NAS中广泛使用,并在一些NAS基准中实现了预测和地面真实性之间的高等级关联。 但是,现有的预测器往往根据预先定义的搜索空间特有的网络编码设计,因此不能推广到其他搜索空间或新的建筑家庭。在本文中,我们为NAS提议了一个通用神经预测器,可以跨越搜索空间,代表任何候选人的变动神经网络(CNN)和由原始操作者组成的计算图(CG ) 。我们进一步将我们的CG网络代表与对比性学习(CL)相结合,并提议一个图表代表程序,利用多个家庭未标定的建筑的结构信息来培训CG的性能预测。 NAS-Bench-101、201和301的实验结果表明我们的计划效力,因为我们在每一个搜索空间上都取得了强劲的Spearman Rangelational Covalvality (SRCC),在每一个搜索空间上都比数个搜索空间的高级结构,在SQRO-stal-stal-stal- Proview Proview Proview Proview Sqal Proview 时, Proview lax 中, laus

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员