In cluster-randomized experiments, there is emerging interest in exploring the causal mechanism in which a cluster-level treatment affects the outcome through an intermediate outcome. Despite an extensive development of causal mediation methods in the past decade, only a few exceptions have been considered in assessing causal mediation in cluster-randomized studies, all of which depend on parametric model-based estimators. In this article, we develop the formal semiparametric efficiency theory to motivate several doubly-robust methods for addressing several mediation effect estimands corresponding to both the cluster-average and the individual-level treatment effects in cluster-randomized experiments--the natural indirect effect, natural direct effect, and spillover mediation effect. We derive the efficient influence function for each mediation effect, and carefully parameterize each efficient influence function to motivate practical strategies for operationalizing each estimator. We consider both parametric working models and data-adaptive machine learners to estimate the nuisance functions, and obtain semiparametric efficient causal mediation estimators in the latter case. Our methods are illustrated via extensive simulations and two completed cluster-randomized experiments.
翻译:暂无翻译