An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph with a given vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best bounds given by nonconstructive results, and those obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this paper we develop a randomized version of this algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.


翻译:在带有给定顶点分区的图形中,独立的横贯(IT)是一个独立的数据集,由每个分区类中的一个顶点组成。对于在特定图表中存在带有给定顶点分区的信息技术,已经知道几个充分的条件,在特定图表中有一个带有给定的顶点分区,多年来一直用它来解决许多组合问题。有些信息技术存在的理论有算法证明,但非建设性结果给定的最佳界限与高效算法所能获取的界限之间仍有差距。最近,Graf和Haxell(2018年)描述了一种新的(非定点性)算法,这种算法无一例外地缩小了这一差距,但对其适用性是有限制的。在本文中,我们开发了这种算法的随机化版本,该版本应用范围要广得多,并且通过提供高效的算法来证明它用于两个与图表的强色数有关的问题。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员