We construct a reliable estimation of evolutionary parameters within the Wright-Fisher model, which describes changes in allele frequencies due to selection and genetic drift, from time-series data. Such data exists for biological populations, for example via artificial evolution experiments, and for the cultural evolution of behavior, such as linguistic corpora that document historical usage of different words with similar meanings. Our method of analysis builds on a Beta-with-Spikes approximation to the distribution of allele frequencies predicted by the Wright-Fisher model. We introduce a self-contained scheme for estimating the parameters in the approximation, and demonstrate its robustness with synthetic data, especially in the strong-selection and near-extinction regimes where previous approaches fail. We further apply to allele frequency data for baker's yeast (Saccharomyces cerevisiae), finding a significant signal of selection in cases where independent evidence supports such a conclusion. We further demonstrate the possibility of detecting time-points at which evolutionary parameters change in the context of a historical spelling reform in the Spanish language.
翻译:我们对Wright-Fisher模型内的演化参数进行可靠的估计,该模型描述由于选择和遗传漂移而从时间序列数据中得出的所有频率的变化。这些数据存在于生物群中,例如通过人工进化实验,以及行为的文化演化,例如记录具有类似含义的不同词的历史用法的语言公司。我们的分析方法建立在Wright-Fisher模型预测的与所有频率分布的Beta和Spikes近似值之上。我们采用了一个自成一体的估算近似值参数的计划,并展示了它与合成数据,特别是在以前方法失败的强选和接近灭绝系统中的数据的稳健性。我们进一步应用了面包机酵母体(Sacharomyce cerevisiae)的Alle频率数据,在独立证据支持这一结论的案件中找到一个重要的选择信号。我们进一步展示了在西班牙语言历史拼写改革的背景下发现进化参数改变的时间点的可能性。</s>