The purpose of this article is to study the algorithmic complexity of the Besicovitch stability of noisy subshifts of finite type, a notion studied in a previous article. First, we exhibit an unstable aperiodic tiling, and then see how it can serve as a building block to implement several reductions from classical undecidable problems on Turing machines. It will follow that the question of stability of subshifts of finite type is undecidable, and the strongest lower bound we obtain in the arithmetical hierarchy is $\Pi_2$-hardness. Lastly, we prove that this decision problem, which requires to quantify over an uncountable set of probability measures, has a $\Pi_4$ upper bound.
翻译:本篇文章的目的是研究Besicovitch固定型的噪音亚变器的算法复杂性,这是前一篇文章中研究的一个概念。 首先,我们展示了一个不稳定的周期性平铺,然后看看它如何能成为实施图灵机器传统无法分解的问题的若干削减的构件。 由此可以发现,固定型亚变的稳定性问题是不可分的,在算术等级中,我们得到的最弱的约束力是$\Pi_2$-硬性。 最后,我们证明,这个需要用数量表示一套无法计算的可能性计量尺度的决定问题,其上限是$\Pi_4$。