Adaptive experimental design methods are increasingly being used in industry as a tool to boost testing throughput or reduce experimentation cost relative to traditional A/B/N testing methods. This paper shares lessons learned regarding the challenges and pitfalls of naively using adaptive experimentation systems in industrial settings where non-stationarity is prevalent, while also providing perspectives on the proper objectives and system specifications in these settings. We developed an adaptive experimental design framework for counterfactual inference based on these experiences, and tested it in a commercial environment.
翻译:工业越来越多地使用适应性实验设计方法,作为提高测试吞吐量或减少与传统的A/B/N测试方法相比实验成本的工具,本文件分享了在非静态盛行的工业环境中天真地使用适应性实验系统所带来的挑战和缺陷方面的经验教训,同时还从这些环境中的适当目标和系统规格的角度提出了观点。我们根据这些经验制定了反事实推断的适应性实验设计框架,并在商业环境中进行了测试。