Existing machine learning models demonstrate excellent performance in image object recognition after training on a large-scale dataset under full supervision. However, these models only learn to map an image to a predefined class index, without revealing the actual semantic meaning of the object in the image. In contrast, vision-language models like CLIP are able to assign semantic class names to unseen objects in a `zero-shot' manner, although they still rely on a predefined set of candidate names at test time. In this paper, we reconsider the recognition problem and task a vision-language model to assign class names to images given only a large and essentially unconstrained vocabulary of categories as prior information. We use non-parametric methods to establish relationships between images which allow the model to automatically narrow down the set of possible candidate names. Specifically, we propose iteratively clustering the data and voting on class names within them, showing that this enables a roughly 50\% improvement over the baseline on ImageNet. Furthermore, we tackle this problem both in unsupervised and partially supervised settings, as well as with a coarse-grained and fine-grained search space as the unconstrained dictionary.


翻译:翻译的摘要: 现有的机器学习模型在全监督下训练大规模数据集后,在图像物体识别方面表现出色。然而,这些模型仅学习将图像映射到预定义的类索引,而不揭示图像中物体的实际语义含义。相比之下,诸如CLIP的视觉语言模型能够以`零样本'方式为看不见的物体分配语义类别名称,尽管它们在测试时仍依赖预定义的候选名称集合。在本文中,我们重新考虑识别问题,并要求视觉语言模型在仅给定大规模的、本质上是无约束的类别词汇表的情况下,分配图像的类别名称。我们使用非参数化方法来建立图像之间的关系,从而使模型自动缩小可能的候选名称集合。具体而言,我们建议对数据进行迭代聚类,并在其中对类名进行投票,表明这使得在ImageNet上基准测试中获得了约50\%的改进。此外,我们在无监督和部分监督设置以及有粗糙和细粒度搜索空间的情况下都解决了这个问题。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
122+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员