ML platforms help enable intelligent data-driven applications and maintain them with limited engineering effort. Upon sufficiently broad adoption, such platforms reach economies of scale that bring greater component reuse while improving efficiency of system development and maintenance. For an end-to-end ML platform with broad adoption, scaling relies on pervasive ML automation and system integration to reach the quality we term self-serve that we define with ten requirements and six optional capabilities. With this in mind, we identify long-term goals for platform development, discuss related tradeoffs and future work. Our reasoning is illustrated on two commercially-deployed end-to-end ML platforms that host hundreds of real-time use cases -- one general-purpose and one specialized.
翻译:ML平台有助于智能数据驱动应用,并以有限的工程努力来维持这些应用。这些平台在得到充分广泛采用后,就达到规模经济,既能带来更多的组件再利用,又能提高系统开发和维护的效率。对于一个广泛采用端到端 ML平台来说,规模的扩大依赖于普遍的ML自动化和系统整合,以达到我们以10项要求和6项可选能力定义的自用质量。铭记这一点,我们确定了平台开发的长期目标,讨论了相关的权衡和今后的工作。我们的理由体现在两个商业上部署端到端的ML平台上,其中包含数百个实时使用案例,一个是普通用途案例,一个是专门案例。</s>