Autonomous driving has witnessed incredible advances in the past several decades, while Multi-Agent Reinforcement Learning (MARL) promises to satisfy the essential need of autonomous vehicle control in a wireless connected vehicle networks. In MARL, how to effectively decompose a global feedback into the relative contributions of individual agents belongs to one of the most fundamental problems. However, the environment volatility due to vehicle movement and wireless disturbance could significantly shape time-varying topological relationships among agents, thus making the Value Decomposition (VD) challenging. Therefore, in order to cope with this annoying volatility, it becomes imperative to design a dynamic VD framework. Hence, in this paper, we propose a novel Stochastic VMIX (SVMIX) methodology by taking account of dynamic topological features during the VD and incorporating the corresponding components into a multi-agent actor-critic architecture. In particular, Stochastic Graph Neural Network (SGNN) is leveraged to effectively capture underlying dynamics in topological features and improve the flexibility of VD against the environment volatility. Finally, the superiority of SVMIX is verified through extensive simulations.


翻译:自动驾驶在过去几十年取得了惊人的进展,而多智能体强化学习 (MARL) 承诺在无线连接的车辆网络中满足自主车辆控制的基本需求。在 MARL 中,如何有效地将全局反馈分解为各个个体代理的相对贡献,是其中最基本的问题之一。然而,由于车辆移动和无线干扰等因素带来的环境波动可能会显着影响个体代理之间的时变拓扑关系,从而使价值分解变得具有挑战性。因此,为了应对这种令人烦恼的波动,有必要设计一个动态的价值分解框架。因此,在本文中,我们提出了一种新颖的基于随机 VMIX (SVMIX) 方法,通过考虑拓扑特征的动态变化情况,在多智能体 actor-critic 架构中结合对应的组件来实现价值分解。具体而言,利用随机图神经网络 (SGNN) 来有效地捕捉拓扑特征中的底层动态变化,并提高价值分解对于环境波动的灵活性。最后,通过广泛的模拟验证 SVMIX 的优越性。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
17+阅读 · 2021年7月11日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员