Pigou's problem has many applications in real life scenarios like traffic networks, graph theory, data transfer in internet networks, etc. The two player classical Pigou's network has an unique Nash equilibrium with the Price of Stability and Price of Anarchy agreeing with each other. The situation changes for the $k-$person classical Pigou's network with $n$ being the total number of people. If we fix the behaviour of $(n-2)$ people and assume that $k-$persons take path $P_2$ where $k<(n-2)$ and the remaining take path $P_1$, the minimum cost of Nash equilibrium becomes $k$ dependent and we find a particular $k$ for which the cost is an absolute minimum. In contrast to the two person classical Pigou's network, the quantum two qubit Pigou's network with maximal entanglement gives a lower cost for the Nash equilibrium, while in contrast to $k-$person classical Pigou's network, it's quantum version gives reduced cost for the Nash equilibrium strategy. This has major implications for information transfer in both classical as well as quantum data networks. By employing entanglement and quantum strategies, one can significantly reduce congestion costs in quantum data networks.
翻译:Pigou的问题在现实生活中有许多应用,如交通网络、图表理论、互联网网络数据传输等。 两个玩家古典Pigou的网络有着独特的纳什平衡,而稳定价格和无政府主义价格是彼此一致的。 美元-美元古典Pigou网络的情况变化是美元,而美元是人口总数。 如果我们修正美元(n-2)的人的行为,并假设美元-美元的人走的是P_2美元的道路,而美元/美元经典Pigou网络与其余走的路价为P_1美元,那么纳什平衡的最低成本将依赖1美元,我们发现一个特殊的纳什平衡的纳什平衡成本是绝对最低的成本。 与两人古典Pigou的网络相比,2 qubit Pigou的网络与最大纠缠在一起,可以降低纳什平衡的成本,而美元-美元经典Pigou网络的量值版本则降低了纳什平衡战略的成本。 这对古典和量子网络的信息传输都具有重大影响,可以大幅降低数量数据网络的密度。