Our main result is a quantum public-key encryption scheme based on the Extrapolated Dihedral Coset problem (EDCP) which is equivalent, under quantum polynomial-time reductions, to the Learning With Errors (LWE) problem. For limited number of public keys (roughly linear in the security parameter), the proposed scheme is information-theoretically secure. For polynomial number of public keys, breaking the scheme is as hard as solving the LWE problem. The public keys in our scheme are quantum states of size $\tilde{O}(n)$ qubits. The key generation and decryption algorithms require $\tilde{O}(n)$ qubit operations while the encryption algorithm takes $O(1)$ qubit operations.


翻译:我们的主要结果是基于外推二元共振问题(EDCP)的量子公用钥匙加密方案,在量子多元时间缩减下,这相当于“学习错误”问题。对于数量有限的公用钥匙(安全参数中大致线性),拟议方案是信息-理论安全。对于公用钥匙的多元数,打破公用钥匙方案与解决LWE问题一样困难。我们计划中的公用钥匙是 $\ tillde{O}(n) qubit 。关键生成和解密算法需要 $\ tilde{O}(n) qubit 操作,而加密算法则需要 $(1) qubit 操作。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年12月24日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【干货】Deep Learning with Python 终于等到你!
量化投资与机器学习
11+阅读 · 2017年12月5日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
Top
微信扫码咨询专知VIP会员