Glass-like objects such as windows, bottles, and mirrors exist widely in the real world. Sensing these objects has many applications, including robot navigation and grasping. However, this task is very challenging due to the arbitrary scenes behind glass-like objects. This paper aims to solve the glass-like object segmentation problem via enhanced boundary learning. In particular, we first propose a novel refined differential module for generating finer boundary cues. Then an edge-aware point-based graph convolution network module is proposed to model the global shape representation along the boundary. Both modules are lightweight and effective, which can be embedded into various segmentation models. Moreover, we use these two modules to design a decoder to get accurate segmentation results, especially on the boundary. Extensive experiments on three recent glass-like object segmentation datasets, including Trans10k, MSD, and GDD, show that our approach establishes new state-of-the-art performances. We also offer the generality and superiority of our approach compared with recent methods on three general segmentation datasets, including Cityscapes, BDD, and COCO Stuff. Code and models will be available at (\url{https://github.com/hehao13/EBLNet})
翻译:窗口、 瓶子和镜像等类似玻璃的物体在现实世界中广泛存在。 遥感这些物体有许多应用, 包括机器人导航和捕捉。 但是, 由于玻璃类物体背后的任意场景, 这项任务非常具有挑战性。 本文旨在通过强化边界学习来解决玻璃类物体分割问题。 特别是, 我们首先提出一个新的精细化差异模块, 用于生成更细的边界线提示。 然后, 提议一个边边远的点基点图形变形网络模块, 以模拟边界沿线的全球形状表示。 两个模块都是轻量和有效的, 并可以嵌入各种分区模型中。 此外, 我们使用这两个模块设计解码器, 以获得准确的分割结果, 特别是在边界上。 最近对三个类似玻璃的物体分割数据集, 包括 Trans10k、 MSDDD 和 GDDD, 进行广泛的实验, 显示我们的方法建立了新的状态- 艺术性表演。 我们还提出我们的方法与最近三个一般分类数据集, 包括城市景观、 BDDD 和 CO Stuff/ Shaub/ Net 的模型, 。 将可以在 Net 。 (creab/ greab/ greab) 。