Graph contrastive learning is the state-of-the-art unsupervised graph representation learning framework and has shown comparable performance with supervised approaches. However, evaluating whether the graph contrastive learning is robust to adversarial attacks is still an open problem because most existing graph adversarial attacks are supervised models, which means they heavily rely on labels and can only be used to evaluate the graph contrastive learning in a specific scenario. For unsupervised graph representation methods such as graph contrastive learning, it is difficult to acquire labels in real-world scenarios, making traditional supervised graph attack methods difficult to be applied to test their robustness. In this paper, we propose a novel unsupervised gradient-based adversarial attack that does not rely on labels for graph contrastive learning. We compute the gradients of the adjacency matrices of the two views and flip the edges with gradient ascent to maximize the contrastive loss. In this way, we can fully use multiple views generated by the graph contrastive learning models and pick the most informative edges without knowing their labels, and therefore can promisingly support our model adapted to more kinds of downstream tasks. Extensive experiments show that our attack outperforms unsupervised baseline attacks and has comparable performance with supervised attacks in multiple downstream tasks including node classification and link prediction. We further show that our attack can be transferred to other graph representation models as well.


翻译:对比图的对比学习是未经监督的图表代表性学习框架,并显示其与监督方法的类似性能。然而,评估图形对比学习是否对对抗性攻击具有很强的力度,仍然是一个尚未解决的问题,因为大多数现有的图表对抗性攻击是受监督的模式,这意味着它们严重依赖标签,并且只能用来评价特定情况下的图形对比学习。对于未经监督的图形代表方法,如图表对比学习等,很难在现实世界情景中找到标签,使传统的受监督的图形攻击方法难以用于测试其稳健性。在本文中,我们提出一种新的未经监督的梯度对抗性攻击,而并不依赖图表对比性学习的标签。我们用两种观点的相近性矩阵的梯度来计算,并只能用来评价图表对比性学习,从而最大限度地增加对比性损失。这样,我们可以完全使用图表对比性学习模型产生的多种观点,在不了解其标签的情况下选择最丰富的信息边缘,从而可以保证支持我们的模式适应更强的梯度梯度攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性新模型,包括监督性、监督性攻击性攻击性下游分析性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性试验,我们不具有更深的深度的跨级试验。我们进行。

1
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
14+阅读 · 2019年11月26日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员