Real-world deployments of WiFi-based indoor localization in large public venues are few and far between as most state-of-the-art solutions require either client or infrastructure-side changes. Hence, even though high location accuracy is possible with these solutions, they are not practical due to cost and/or client adoption reasons. Majority of the public venues use commercial controller-managed WLAN solutions, %provided by Aruba, Cisco, etc., that neither allow client changes nor infrastructure changes. In fact, for such venues we have observed highly heterogeneous devices with very low adoption rates for client-side apps. In this paper, we present our experiences in deploying a scalable location system for such venues. We show that server-side localization is not trivial and present two unique challenges associated with this approach, namely Cardinality Mismatch and High Client Scan Latency. The "Mismatch" challenge results in a significant mismatch between the set of access points (APs) reporting a client in the offline and online phases, while the "Latency" challenge results in a low number of APs reporting data for any particular client. We collect three weeks of detailed ground truth data (~200 landmarks), from a WiFi setup that has been deployed for more than four years, to provide evidences for the extent and understanding the impact of these problems. Our analysis of real-world client devices reveal that the current trend for the clients is to reduce scans, thereby adversely impacting their localization accuracy. We analyze how localization is impacted when scans are minimal. We propose heuristics to alleviate reduction in the accuracy despite lesser scans. Besides the number of scans, we summarize the other challenges and pitfalls of real deployments which hamper the localization accuracy.


翻译:在大型公共场所实际部署基于WiFi的室内本地化的情况很少,而且远远介于大多数最先进的解决方案需要客户或基础设施方面的变化。因此,尽管这些解决方案可能具有较高的定位准确性,但由于成本和/或客户的采用原因,这些解决方案并不实用。大部分公共场所使用商业控制管理的WLAN解决方案,由阿鲁巴、思科等提供%,这既不允许客户改变,也不允许基础设施改变。事实上,对于这些网站,我们观察到高度分散的运行设备,其客户端应用程序的采用率非常低。在本文件中,我们介绍了在为这些网站部署一个可缩放的准确性系统方面我们的经验。我们展示了服务器端端端的定位并非微不足道,而是提出了与这一方法相关的两个独特的挑战,即Craintality Mismatch和高客户端扫描时间。“Mismatch”挑战导致接入点在报告客户端的离线和在线阶段的接入点之间出现严重不匹配,而“Latinity”挑战则导致客户点报告数据数量较少,对于任何客户的当前客户的准确化数据报告则会减少。我们比维realalalalalalalalalalalalalalalalalalalalalalalalalalalalation 范围要低得多。我们收集了4个星期。我们收集了4年的准确度分析。我们收集了多少了。我们收集了这些事实数据。我们收集了4年的准确度数据,我们收集了多少次。我们收集了实地数据。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
44+阅读 · 2020年10月31日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Top
微信扫码咨询专知VIP会员