Searching for small objects in large images is currently challenging for deep learning systems, but is a task with numerous applications including remote sensing and medical imaging. Thorough scanning of very large images is computationally expensive, particularly at resolutions sufficient to capture small objects. The smaller an object of interest, the more likely it is to be obscured by clutter or otherwise deemed insignificant. We examine these issues in the context of two complementary problems: closed-set object detection and open-set target search. First, we present a method for predicting pixel-level objectness from a low resolution gist image, which we then use to select regions for subsequent evaluation at high resolution. This approach has the benefit of not being fixed to a predetermined grid, allowing fewer costly high-resolution glimpses than existing methods. Second, we propose a novel strategy for open-set visual search that seeks to find all objects in an image of the same class as a given target reference image. We interpret both detection problems through a probabilistic, Bayesian lens, whereby the objectness maps produced by our method serve as priors in a maximum-a-posteriori approach to the detection step. We evaluate the end-to-end performance of both the combination of our patch selection strategy with this target search approach and the combination of our patch selection strategy with standard object detection methods. Both our patch selection and target search approaches are seen to significantly outperform baseline strategies.


翻译:在大型图像中搜索小对象目前对深层学习系统具有挑战性,但是一项涉及多种应用的任务,包括遥感和医学成像。对大图像的彻底扫描在计算上成本很高,特别是在足以捕捉小物体的分辨率上。兴趣对象越小,越容易被杂乱或被认为不重要的物体所掩盖。我们从两个互补问题的角度来研究这些问题:闭合对象探测和开放目标搜索。首先,我们提出了一个从低分辨率图像中预测像素水平目标的方法,我们然后用这种方法来选择区域,以便随后进行高分辨率评估。这种方法的好处是不能固定在一个预设的网格上,使高分辨率的透镜能够比现有方法更便宜。第二,我们提出了一个开放的视觉搜索新战略,试图在同一个类图像中找到所有对象,作为给定的目标参考图像。我们通过一种概率式的Bayesian透镜来解释这两个探测问题,这样我们的方法产生的对象图可以作为我们探测目标目标的先期方法。我们用最接近的近距离方法来选择一个预选一个区域,我们的目标选择目标选择方法,然后用这个选择选择方法的精确选择方法,我们的目标选择方法,用这个选择方法的精确的精确选择方法。我们的目标选择选择方法,我们的目标选择方法的精确选择方法的分级选择方法的分级选择方法,我们选择了我们的目标组合。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
20+阅读 · 2020年6月8日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
相关论文
Arxiv
0+阅读 · 2021年2月11日
Arxiv
20+阅读 · 2020年6月8日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
6+阅读 · 2018年2月8日
Top
微信扫码咨询专知VIP会员