We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks -- retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents -- in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.


翻译:我们开发了一个统一系统,直接从文本开放域的问题中回答,这些问题可能需要不同的检索步骤。我们使用一个单一的多任务变压器模型,以迭接方式执行所有必要的子任务 -- -- 检索支持的事实,重新排列它们的位置,并从所有检索到的文件预测答案 -- -- 我们避免对以往工作的关键假设,这些假设没有很好地转移到现实世界的设置中,包括利用对回答每个问题所需的固定检索步骤数量的知识,或使用结构化的元数据,例如知识库或网络链接,这些元数据的可用性有限。相反,我们设计了一个系统,可以在不事先了解推理复杂性的情况下回答任何文本收集方面的开放域变压问题。为了效仿这一设置,我们建立了一个新的基准,称为BeerQA,将现有的一和两步数据集与新的530个问题集结合起来,这需要三个维基百科网页来回答,在这个过程中统一维基百科的版本。我们展示了我们的模型在现有基准和这个新基准上的竞争性表现。我们将在https://beerqa.github.io/。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年10月9日
专知会员服务
22+阅读 · 2021年9月16日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
Top
微信扫码咨询专知VIP会员