We study whether and how can we model a joint distribution $p(x,z)$ using two conditional models $p(x|z)$ and $q(z|x)$ that form a cycle. This is motivated by the observation that deep generative models, in addition to a likelihood model $p(x|z)$, often also use an inference model $q(z|x)$ for extracting representation, but they rely on a usually uninformative prior distribution $p(z)$ to define a joint distribution, which may render problems like posterior collapse and manifold mismatch. To explore the possibility to model a joint distribution using only $p(x|z)$ and $q(z|x)$, we study their compatibility and determinacy, corresponding to the existence and uniqueness of a joint distribution whose conditional distributions coincide with them. We develop a general theory for operable equivalence criteria for compatibility, and sufficient conditions for determinacy. Based on the theory, we propose a novel generative modeling framework CyGen that only uses the two cyclic conditional models. We develop methods to achieve compatibility and determinacy, and to use the conditional models to fit and generate data. With the prior constraint removed, CyGen better fits data and captures more representative features, supported by both synthetic and real-world experiments.
翻译:我们研究的是,我们是否以及如何用形成周期的两个条件模型来模拟联合分发美元(x,z)美元(美元)和美元(z)美元(z)美元(美元),其动机是,我们研究的是,深基因模型,除了可能的模型(x,z)美元之外,还经常使用一种推论模型($(z)美元)来提取代表,但是,它们依赖通常不提供信息的事先分配美元(z)来定义联合分发,这可能造成后后体崩溃和多重错配等问题。探索仅使用美元(x)美元和美元(z)美元(z)来模拟联合分发的可能性,我们研究这些模型的兼容性和确定性,这与有条件分配与它们相符的联合分配的存在和独特性相对应。我们为兼容性与兼容性兼容性等同性标准的适用性以及确定性的充分条件制定了一般理论。基于理论,我们提出了一个新型的配比框架CyGen,它只使用两种周期性模型。我们开发了更精确性、更精确性的数据模型,并用更精确的模型和合成模型支持了更精确性模型。