This paper presents an application of the LayoutLMv3 model for semantic table detection on financial documents from the IIIT-AR-13K dataset. The motivation behind this paper's experiment was that LayoutLMv3's official paper had no results for table detection using semantic information. We concluded that our approach did not improve the model's table detection capabilities, for which we can give several possible reasons. Either the model's weights were unsuitable for our purpose, or we needed to invest more time in optimising the model's hyperparameters. It is also possible that semantic information does not improve a model's table detection accuracy.
翻译:本文介绍了在IIIT- AR- 13K 数据集的金融文档中检测语义表的布局LMv3 模型的应用。 本文实验的动机是,布局LMv3 的正式文件没有使用语义信息检测表格的结果。 我们的结论是,我们的方法没有改进模型的表识别能力,我们可以给出若干可能的理由。 要么模型的重量不适合我们的目的,要么我们需要投入更多的时间来优化模型的超参数。 语义信息也可能不能改善模型的表检测准确性。